Volume 31

Number 1

January 8, 1992

Inorganic Chemistry

© Copyright 1992 by the American Chemical Society

Communications

Reactions of RuHCl(CO) $[P(i-Pr)_3]_2$ with H₂ in Solution. New Molecular Hydrogen Complexes of Ruthenium: $RuH(H_2)Cl(CO)[P(i-Pr)_3]_2$ and $Ru(H)_{2}(H_{2})(CO)[P(i-Pr)_{3}]_{2}$

Reactions of dihydrogen with coordinatively unsaturated transition-metal hydride complexes containing Cl ligands lead, in some cases, to new classical and nonclassical hydrides. In solution, RuHCl(PPh₃)₃, OsHCl(CO)[P(*i*-Pr)₃]₂, and IrHCl₂L₂ (L = P(*i*-Pr)₃, PCy₃)^{3,4a} add H₂, probably in an η^2 -fashion. The reactions of H_2 with the monohydrides $MHCl_2L_2$ (M = Rh, Ir) give also the dihydrides MH_2ClL_2 ,⁴ and IrH_2ClL_2 coordinates H_2 to give $Ir(H)_2(H_2)ClL_2$.^{4a,5} The polyhydrides $RuH_4(PPh_3)_3$ and IrH₅L₂ are formed upon reaction of RuHCl(PPh₃)₃ and IrHCl₂L₂ with dihydrogen in the presence of NaOH.⁶ In continuation of these studies we have now found that $RuHCl(CO)[P(i-Pr)_3]_2$ (1)⁷ also reacts with H₂ to form the new dihydrogen complexes $RuH(H_2)Cl(CO)[P(i-Pr)_3]_2$ and $Ru(H)_2(H_2)(CO)[P(i-Pr)_3]_2$.

The ¹H NMR spectra⁸ of 1 in toluene under argon show the H ligand resonance at δ -24.4 in the temperature range 180-290 K. However, in the spectra of this solution under H_2 , the chemical shifts of the hydride and dissolved H₂ resonances are temperature dependent, as if a rapid equilibrium exists in the sample. Thus, on cooling a solution of 1 with a slight excess of dissolved dihydrogen ([1] = $2.8 \pm 0.4 \text{ mmol/L}$; [H₂]/[1] = 1.3), the signals of RuH and H₂ shift gradually from δ -23.9 (290 K) to δ -8.5 (180 K) and from δ 4.38 (290 K) to δ 2.41 (223 K), respectively. At the same time, the T_1 value of the H_2 resonance rapidly shortens (from 1.2 s at 308 K to 0.016 s at 234 K) and this signal is not observed below 223 K due to strong broadening. However, in the temperature range between 180 and 200 K a characteristic triplet assigned to η^2 -HD (with J(H,D) = 34.5 Hz) is clearly observed at δ -0.43 and -0.86 in the ¹H NMR spectra of solutions of 1 ([1] is ca. 10 mmol/L) in toluene and dichloromethane (under

(1) Strathdee, G.; Given, R. Can. J. Chem. 1975, 53, 106.

- (2) (a) Esteruelas, M. A.; Sola, E.; Oro, L. A.; Meyer, U.; Werner, H. *Angew. Chem., Int. Ed. Engl.* 1988, 27, 1563. (b) Andriollo, A.; Esteruelas, M. A.; Meyer, U.; Oro, L. A.; Sanchez-Delgado, R. A.; Sola, E.; Valero, C.; Werner, H. J. Am. Chem. Soc. 1989, 111, 7431.
- Mura, P.; Segre, A.; Sostero, S. Inorg. Chem. 1969, 111, 981.
 Mura, P.; Segre, A.; Sostero, S. Inorg. Chem. 1989, 28, 2853.
 (a) Gusev, D. G.; Bakhmutov, V. I.; Grushin, V. V.; Vol'pin, M. E. Inorg. Chim. Acta 1990, 177, 115. (b) Gusev, D. G.; Bakhmutov, V. I.; Grushin, V. V.; Vol'pin, M. E. Inorg. Chim. Acta 1990, 175, 19.
 Mediati, M.; Tachibana, G. N.; Jensen, C. M. Inorg. Chem. 1990, 29,
- (6) Grushin, V. V.; Vymenits, A. B.; Vol'pin, M. E. J. Organomet. Chem. 1990, 382, 185.
- (a) The monohydride RuHCl(CO)[P(i-Pr)₃]₂ was prepared according to the procedure previously reported.^{7b}
 (b) Esteruelas, M. A.; Werner, H. J. Organomet. Chem. 1986, 303, 221.
 The ¹H, ¹H, and ³¹P NMR spectra were obtained on a Bruker WP-200 SY spectrometer. The ¹³C NMR spectrum was recorded on a Bruker WP-200 SY spectrometer.
- AMX-400 spectrometer. Relaxation time (T_1) experiments employed the inversion recovery method ($180^{\circ}-\tau-90^{\circ}$ pulse sequence) at 200 MHz. All temperatures were carefully calibrated by using the 'H chemical shifts of methanol.

an atmosphere of HD), respectively. Furthermore, at 200 K in the ²H NMR spectrum of 1 and HD in CH₂Cl₂ a doublet at δ -0.75 due to the η^2 -HD resonance is also detected, which becomes a singlet with ¹H CW-decoupling.

The above observations can be rationalized in terms of an equilibrium (eq 1) between monohydride 1 and dihydrogen complex 2, which strongly shifts to the right at low temperatures.

$$\frac{\text{RuHCl(CO)}[P(i-Pr)_3]_2 + H_2}{1} \rightleftharpoons \frac{\text{RuH}(H_2)\text{Cl(CO)}[P(i-Pr)_3]_2}{2}$$
(1)

The equilibrium 1 becomes slow (on the NMR time scale) below 190 K, and at 180 K separate resonances of 1 and 2 are simultaneously observed at δ -24.4 and -8.5, respectively, if the initial concentration of 1 exceeds that of the dissolved dihydrogen. ΔH° and ΔS° values of -7.7 ± 0.2 kcal/mol and -23.2 ± 1 eu were calculated for the formation of 2 from 1 in toluene from the variable-temperature ¹H NMR spectra.

The solutions of 1 in toluene under an atmosphere of H_2 remained unchanged during 3 months, and the equilibrium was completely reversible. However, in the presence of KOH, 1 reacts with H_2 in toluene (or dichloromethane) affording a new complex 3.9 The ${}^{31}P{}^{1}H$ NMR spectra of this toluene solution exhibit only one signal at δ 81.7 at 290 K and on cooling the sample down to the freezing point. At 290 K, a single broad resonance (δ -7.50) is also observed in the high-field region of the ¹H NMR spectrum of the solution, and at 270 K, it appears as a well-resolved triplet $(^{2}J(H,P) = 10.8 \text{ Hz})$. The phosphine protons of 3 give rise to resonances at δ 1.88 (CH) and 1.16 (CH₃) with relative intensities very close to 36:6:4 for CH₃:CH:RuH. The ¹³C{¹H} NMR spectrum of 3 shows resonances at δ 28.8 (CH) and 21.1 (CH₃) and a one at δ 205.4 (triplet, ²J(C,P) = 8.5 Hz) due to a CO ligand which is cisoid to two $P(i-Pr)_3$ ligands.¹⁰ These data allow us to formulate 3 as $RuH_4(CO)[P(i-Pr)_3]_2$.¹¹ The number of hydrides was also reliably confirmed by an observation of a quintet in the ³¹P NMR spectrum of 3 with selective decoupling of the phosphine protons at 260 K.

In solutions of 3 under 1 atm of H_2 an exchange exists between the metal-bonded hydrogens and dissolved dihydrogen. At 260

The complex 3 was prepared like the related $RuH_4(PPh_3)_3$.⁶ In a typical (9) preparation, a mixture of RuHCl(CO)[$P(i-Pr)_{3}$]₂ (0.02 g, 0.04 mmol), 18-crown-6 (0.01 g), and solid KOH (0.1 g) in 1 mL of toluene- d_8 (or CH₂Cl₂) was stirred under H₂ (1 atm) at 20 °C in a 50-mL Schlenk flask with attached NMR tube. After 30 min the obtained solution of 3 was transferred into the NMR tube (where the atmosphere was the same as that in the flask) and the tube was then flame-sealed. The samples of the deuterated complex 3 were prepared in a similar way under HD or D2. A significant deuteration (65%) also took place during the preparation of 3 in CD₂Cl₂ under H₂

Jia, C.; Meek, D. W.; Gallucci, G. C. Inorg. Chem. 1991, 30, 403. (a) It has been previously supposed that the addition of KOH to the complex 1 in 2-propanol also led to the formation of 3.^{11b} (b) Esteruelas, M. A.; Sola, E.; Oro, L. A.; Werner, H.; Meyer, U. J. Mol. Catal. 1988, 45.1.

Figure 1. (a-e) Variable-temperature ¹H NMR spectra of the hydride region of Ru(H)₂(H₂)(CO)[P(i-Pr)₃]₂ dissolved in a mixture of CH₂Cl₂ and toluene- d_8 (5%) under an atmosphere of H₂ and (f-h) the hydride region of the 'H NMR spectra at lowest attainable temperature of the following samples: (f) partially deuterated 3 (65% D) in CD_2Cl_2 ; (g) complex 3 in toluene- d_8 ; (h) partially deuterated 3 (50% D) in toluene- d_8 . In the cases of the samples for spectra f and h the sources of deuterium were CD₂Cl₂ and HD gas, respectively.⁹ The amount of deuteration was determined by integration of the residual resonance in the hydride region against the resonances of the phosphine protons.

K, irradiating the RuH₄ resonance saturates the resonance of H₂ at δ 4.53. At temperatures above 270 K, this intermolecular exchange destroys ${}^{1}H-{}^{31}P$ spin-spin coupling and the hydride signal is broad. However, at temperatures below 250 K, the width of the RuH₄ resonance increases again due to a fast proton relaxation. The minimum T_1 value of 15 ± 0.5 ms found for this resonance in toluene at 200 K clearly indicates¹² the presence of a dihydrogen ligand in 3, assuming a rapid intramolecular exchange between the dihydrogen and hydride ligands. The T_1 time of 13.9 ± 0.5 ms is also observed in a dichloromethane solution of 3 at 190 K. According to these data, an H-H bond distance in the η^2 -H₂ ligand of Ru(H)₂(H₂)(CO)[P(*i*-Pr)₃]₂ of 0.86–0.84 Å can be calculated.13

At 260 K the ¹H NMR spectrum of a deuterated (under a 9:1 $D_2:H_2$ atmosphere) complex 3 in toluene reveals a pattern at δ -7.64, best described as an AX₂Y₃ spin system (X = ${}^{31}P$, Y = ²H), with ${}^{2}J(H,P) = 10.8$ Hz and J(H,D) = 5.4 Hz. The latter is the value expected (if hydrogen and deuterium are distributed statistically) for the HD₃ isotopomer of 3, where the J(H,D) value for the η^2 -HD ligand is actually 32.4 Hz.¹⁴

A slowing of the exchange between the dihydrogen and hydride ligands of 3 takes place below 190 K (Figure 1a-d). After that, in the ¹H NMR spectra separate resonances are observed at δ -5.0, -8.95, and -9.93 in toluene and at $\delta -5.2$, -9.83, and -10.49 in dichloromethane solutions of 3. In the case of a CD_2Cl_2 solution of a partially deuterated complex 3, the two signals between -9and -11 ppm reveal couplings ²J(H,P) of 21.8 and 19.6 Hz (Figure 1f) as expected for cis hydride and phosphine ligands.

The fact that the width of the signal at δ -5 is substantially reduced by partial deuteration (due to weakening of dipole-dipole interactions) allows us to assign the signal to the dihydrogen ligand. The lack of observable J(H,D) couplings in the spectra of the partially deuterated 3 (Figure 1f,h) can be explained taking into account deuterium relaxation, which results in the scalar relaxation of the second kind of the proton in the HD ligand. Preliminary ²H T_1 data for Ru(D)₂(D₂)(CO)[P(*i*-Pr)₃]₂ give the T_1 value of ca. 12 ms at 157 K.¹⁵ The relaxation rate $(1/T_1)$ of 83 s⁻¹ is sufficient to cause the strong broadening of the HD triplet and

can preclude observation of the expected 32.4 Hz J(H,D) in 3 at low temperatures.¹⁶

There are two possible structures (3a and 3b) for $Ru(H)_2$ - $(H_2)(CO)[P(i-Pr)_3]_2$, which are depicted in Chart I. In the case of the most probable structure 3a, three hydride signals are expected in the slow-exchange spectra in the ratio 2:1:1 and an averaged resonance must be observed at $\delta = 0.5(\delta(H_2)) + 0.25$ - $(\delta_1(\mathbf{H}) + \delta_2(\mathbf{H}))$. According to the data discussed above, the averaged resonances are expected at δ -7.22 and -7.68 in toluene and dichloromethane solutions of 3, respectively. These values are in good agreement with the experimental δ of -7.30 and -7.75 at 190 K. The same averaging is valid for the H-P couplings, and the observed ${}^{2}J(H,P) = 10.8$ Hz can be obtained if ${}^{2}J(H_{2}-P)$ = 0.9 Hz. Thus, our data are most consistent with the structure 3a and provide no evidence for the formation of any reliably detectable amounts of 3b or the classical tautomer, RuH₄- $(CO)[P(i-Pr)_{3}]_{2}$

Acknowledgment. We thank Professor R. H. Crabtree for helpful discussion.

Supplementary Material Available: Figures S1 and S2, showing the temperature-dependent behavior of the RuH and H₂ resonances in the ¹H NMR spectra of 1 in toluene solution under an atmosphere of H_2 (2) pages). Ordering information is given on any current masthead page.

⁽a) Pople, J. A. Mol. Phys. 1958, 1, 168. (b) Heinekey, D. M.; Millar, (16)J. M.; Koetzle, T. F.; Payne, N. G.; Zilm, K. W. J. Am. Chem. Soc. 1990, 112, 909

Institute of Organo-Element Compounds	Dmitry G. Gusev*
Academy of Sciences of the USSR	Alexey B. Vymenits
117813 Moscow, USSR	Vladimir I. Bakhmutov

Received June 21, 1991

Di-tert-butylphosphido versus Diphenylphosphido as a **Bridging Ligand in Binuclear Iron Carbonyl Complexes:** Synthesis and Structural Characterization of $Fe_2(CO)_5(\mu-P(t-Bu)_2)_2$ and $Fe_2(CO)_6(\mu - PPh_2)(\mu - P(t - Bu)_2)$

Binuclear iron carbonyls containing two 3-electron bridging ligands, such as phosphido (PR₂), thiolato, amido, certain hydrocarbyls, and several other inorganic and organic groups, represent a numerous class of structurally related complexes.^{1,2} The μ -phosphido members of this class are invariably hexacarbonyls,

⁽¹²⁾ Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95.

⁽¹³⁾ (a) Gusev, D. G.; Vymenits, A. B.; Bakhmutov, V. I. Inorg. Chim. Acta 1991, 179, 195. (b) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 3027.
 (14) Earl, K. A.; Jia, C.; Maltby, P. A.; Morris, R. H. J. Am. Chem. Soc.

^{1991, 113, 3027.}

⁽¹⁵⁾ The ²H T_1 values of 11 ms have been observed in RuO₄{P(Ph-o-d_2)₃} and $OsD_4[P(Tol-o-d_2)_3]_3$ at low temperatures.¹¹

⁽¹⁾ Reviews: (a) Shriver, D. F.; Whitmire, K. H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Vol. 4, Chapter 31.1, p 243. (b) Carty, A. J. Adv. Chem. Ser. 1982, 196, 163. (c) Wojcicki, Coordination Chemistry and Catalysis; Ziółkowski, J. J., Ed.; World

<sup>Coordination Chemistry and Catalysis, Zlokkowski, J. J., Ed.; World Scientific Publishing Co.: Singapore, 1988; p. 3.
Selected recent references: (a) Seyferth, D.; Hoke, J. B.; Womack, G. B. Organometallics 1990, 9, 2262. (b) King, R. B.; Wu, F.-J.; Holt, E. M. J. Am. Chem. Soc. 1988, 110, 2775. (c) Ros, J.; Viñas, J. M.; Mathieu, R.; Solans, X.; Font-Bardia, M. J. Chem. Soc., Dalton Trans. 1988, 281. (d) Kyba, E. P.; Davis, R. E.; Clubb, C. N.; Liu, S.-T.; Aldaz Palacios, H. O.; McKennis, J. S. Organometallics 1986, 5, 869. (e) Yu, Y.-F.; Wojcicki, A.; Calligaris, M.; Nardin, G. Ibid. 1986, 5, 47. (f) Breen, M. J.; Geoffred, G. L., Lind, T. Chen, G. J., Liu, S.-T.; Aldaz Palacios, H. O.; McKennis, J. S. Organometallics 1986, 5, 869.</sup> (f) Breen, M. J.; Geoffroy, G. L. Ibid. 1982, 1, 1437. (g) Taylor, N. J.; Mott, G. N.; Carty, A. J. Inorg. Chem. 1980, 19, 560.